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Abstract
We study the first eigenvalue of the Laplace equation in a bounded domain in
R

d(d = 2, 3) with mixed Neumann–Dirichlet (Zaremba) boundary conditions.
The Neumann condition is imposed on most of the boundary and the Dirichlet
boundary consists of a cluster of small windows. When the windows are
well separated the first eigenvalue is asymptotically the sum of eigenvalues
of mixed problems with a single Dirichlet window. However, when two or
more Dirichlet windows cluster tightly together they interact nonlinearly. We
compare our asymptotic approximation of the eigenvalue to the escape rate of
simulated Brownian particles through the small windows.

PACS number: 05.40.−a

1. Introduction

The first eigenvalue λ1(ε) of the Laplace equation in a bounded domain �, with mixed
Neumann–Dirichlet boundary conditions, decreases to zero as the Dirichlet part of the
boundary, ∂�a , shrinks and disappears. The reciprocal of the first eigenvalue in this limit
is asymptotically the mean first passage time (MFPT) of Brownian motion to ∂�a , if its
trajectories are reflected at ∂�r = ∂� − ∂�a . This problem has been studied in various
geometries, mostly under the assumption that ∂�a consists of well-separated circular windows
(for d = 3) or arcs (for d = 2), analytically in [1–8] and numerically in [9] for a sphere in
R

3. It was shown that for the case of a single Dirichlet circular window of radius a (in three
dimensions, |∂�a| = πa2) and a single Dirichlet arc (in two dimensions) the MFPT (the
reciprocal of the first eigenvalue) is given by

1

λ1(ε)
∼ τ̄ε =

⎧⎪⎨
⎪⎩

|�|
πD

log
1

ε
(1 + o(1)) for d = 2

|�|
4aD

(1 + o(1)) for d = 3,

(1)
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where

ε =
( |∂�a|

|∂�|
)1/(d−1)

� 1.

Note that for d = 2 equation (1) holds for any absorbing arc of length αε, where α = O(1)

for ε � 1. If there are several well-separated Dirichlet windows, Ai, (i = 1, . . . , n), then

λ1(ε) ∼ 1

τ̄ε

=
n∑

i=1

1

τ̄εi

, (2)

where τ̄εi
is given by the single-window result (1) with ∂�a = Ai .

In this paper, we study analytically the mixed problem for a Dirichlet boundary ∂�a that
consists of a collection of small windows embedded in an otherwise Neumann boundary ∂�r

of a regular bounded domain �. Equivalently, we study the MFPT of Brownian motion to
∂�a . In particular, we show that when the small Dirichlet windows form a cluster, the MFPT
to one is influenced by the others, which is not the case for well-separated windows. We
generalize the method of [5–8], which consists in deriving and solving Helmholtz’s integral
equation on the boundary, to the case of several separated or clustered windows. The method
of [1–4] applies in a straightforward manner to the case of well-separated windows, where the
leading order boundary layer problem is that of the electrified disk, and was solved explicitly
by Weber in 1873 [10, 11], but for clustered windows the leading order boundary layer problem
is that of two, or more electrified disks. The asymptotic solution of the Helmholtz integral
equation circumvents this difficulty and reveals the nonlinear interaction between the clustered
windows. We find the explicit dependence of the MFPT on the distance between the windows
and demonstrate that the result (1) is recovered as the windows drift apart and a new result is
obtained as the windows touch (for d = 3) or merge (for d = 2). Specifically, for d = 2 and
a regular domain with two Dirichlet arcs of lengths 2ε and 2δ (normalized by the perimeter
|∂�|) and separated by the Euclidean distance 	 = ε + 	′ + δ between their centers, and for
two Dirichlet circular windows of small radii a and b, separated by the Euclidean distance
	 = a + 	′ + b between their centers (see figure 1), we obtain

1

λ1(ε, δ)
∼ τ̄ε

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|�|
πD
(
log 1

ε
+ log 1

δ

) log 1
δ

log 1
ε

− [log|ε + 	′ + δ| + O(1)]2

1 + 2 log |ε+	′+δ|+O(1)

log 1
δ

+log 1
ε

for d = 2

|�|
4(a + b)Dr̃

1 − 16abr̃2
(

1
2π |a+	′+b| + O(1)

)2
1 − 8abr̃

a+b

(
1

2π |a+	′+b| + O(1)
) for d = 3,

(3)

as a, b, ε, δ,	′ → 0. Here r̃ = r̃(	′, ε, δ) is a function of 	′, ε, δ that varies monotonically
between r̃(0, 0, 0) ≈ 0.6 and r̃(	′, 0, 0) → 1 as 	′ → ∞.

Equation (3) reduces to the single-window result (1) as δ → 0 or b → 0. As the windows
drift apart and 	 � ε, δ, a, b the expression (3) gives λ1(ε, δ) ≈ λ1(ε, 0) + λ1(0, δ), but as
	 → 0 (3) is a new result. It shows the nonlinear effect of clustering, which becomes more
pronounced as the number of absorbing windows is large (see section 3). The term O(1),
which is due to the regular part of the Green–Neumann, expresses geometric properties of the
absorbing boundary. Its analytical approximation seems much harder, but it can be estimated
from numerical simulations of Brownian motion (see figures 3 and 4).

The mixed problem with a small Dirichlet cluster has many applications in cellular biology
[12], because the MFPT to a Dirichlet cluster is the mean time for a diffusing messenger to
hit a cluster of small targets. For example, this may be the mean time until a neurotransmitter,
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Figure 1. Schematic representation of a disk and a sphere with two holes on the boundary. In the
plane, the arclengths of the holes are 2δ and 2ε, respectively, separated by Euclidean distance 	,
while in 3D, the radii of the holes are, respectively, a and b.

released into the synaptic cleft, binds to a receptor in a cluster on the boundary of a micro-
domain (the postsynaptic density [13]). Another example of clustered Dirichlet boundary is the
clustering of transporters at the periphery of synapses and exchangers at dendrites [14]. Also,
the asymptotic evaluation of the first eigenvalue is the first step toward the homogenization
of the mixed problem for the diffusion equation with complicated reactive boundaries, which
will be done separately.

2. Interaction between two small holes

2.1. Derivation of the Helmholtz integral equation

We consider Brownian motion in a bounded domain � ⊂ R
d (d = 2, 3), whose boundary

∂� is reflecting, except for two small absorbing {circular windows, A ⊂ ∂� and B ⊂ ∂�,
centered at 0A ∈ ∂� and 0B ∈ ∂�, of sizes (|A|/|∂�|)1/(d−1) = ε and (|B|/|∂�|)1/(d−1) = δ,
which are the radii of A and B, respectively, if the domain is normalized so that ∂� = π . In
contrast to the case of a single absorbing window, the mean time to absorption (MTA) does not
diverge to infinity as the size of one of the windows decreases to zero. Thus the computation
of the MTA differs from that for the single-window case given in [5]. Our purpose is to derive
an asymptotic approximation to the probability flux through each window for ε, δ � 1.

The MTA, u(x) = E[τ |x(0) = x], is the solution of the mixed Neumann–Dirichlet
boundary value problem (see for example [17])

D	u(x) = −1 for x ∈ � (4)

∂u(x)

∂n
= 0 for x ∈ ∂� − ∂�a (5)

u(x) = 0 for x ∈ ∂�a, (6)

where D is the diffusion coefficient. We set

g(x) = D
∂u(x)

∂n
for x ∈ ∂�a.

3
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The fluxes are defined by


A = −
∫

A

g(x) dSx, 
B = −
∫

B

g(x) dSx.

To compute the fluxes, we first integrate equation (4) over the domain and we get


A + 
B = |�|. (7)

We then use the Neumann function, as in [5], to construct an asymptotic approximation to the
solution u(x) of the mixed boundary value problem (4)–(6). We assume, for convenience, that
D = 1. The Neumann function N(x, ξ), as defined in [15], is the solution of the boundary
value problem

D	xN(x, ξ) = −δ(x − ξ) for x, ξ ∈ � (8)

D
∂N(x, ξ))

∂n(x)
= − 1

|∂�| for x ∈ ∂�, ξ ∈ �, (9)

and is defined up to an additive constant. It has the form

N(x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1

Dσd−1
|x − ξ|−d+2 + vS(x, ξ) for d > 2, x, ξ ∈ �

− 1

2Dπ
log |x − ξ| + vS(x, ξ) for d = 2, x, ξ ∈ �,

(10)

where vS(x, ξ) is a regular harmonic function away from the boundary. For d = 3 it has a
logarithmic singularity, which is proportional to the mean curvature of the boundary in the
window. More specifically [16, p 247], for |x| = |ξ| = R, and 
 (x, ξ) = γ , the logarithmic
part of the Neumann function for a sphere of radius R is

vS(x, ξ) = − 1

4πDR
log

(
sin2 γ

2
+ sin

γ

2

)
. (11)

Therefore vS(x, ξ) is bounded for 0 < const < γ < π . The constant σd−1 is the surface area
of the unit sphere in R

d .
To derive an integral representation of the solution, we multiply equation (4) by N(x, ξ),

equation (8) by u(x), integrate with respect to x over �, and use Green’s formula to obtain
the identity

D

∮
∂�

N(x, ξ)
∂u(x)

∂n
dSx +

1

|∂�|
∮

∂�

u(x) dSx = u(ξ) −
∫

�

N(x, ξ) dx. (12)

The second integral on the left-hand side of equation (12) is an additive constant, so we obtain
the representation

u(ξ) =
∫

�

N(x, ξ) dx + D

∫
∂�a

N(x, ξ)
∂u(x)

∂n
dSx + C, (13)

where

C = 1

|∂�|
∮

∂�

u(x) dSx

is a constant to be determined from the boundary condition (6) and dSx is a surface area element
on ∂�a . We choose, respectively, ξ ∈ A and ξ ∈ B, and using the boundary condition (6), we
obtain the two equations

F(ξ) =
∫

A

N(x, ξ)gA(x) dSx +
∫

B

N(x, ξ)gB(x) dSx, for ξ ∈ A (14)

4
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F(ξ) =
∫

A

N(x, ξ)gA(x) dSx +
∫

B

N(x, ξ)gB(x) dSx, for ξ ∈ B, (15)

where

F(ξ) = −
(∫

�

N(x, ξ) dx + C

)
. (16)

As discussed in [5], the first integral in equation (16) is a regular function of ξ on the boundary.
Similar conditions have been derived in [18], for the case of diffusion though many holes in a
plane separating two half-spaces.

The system of equation (14)–(15), called the Helmholtz integral equations [19], cannot
be solved explicitly by using the methods presented in [1–4, 6]. Setting r = |x − 0A|, (r ′ =
|x − 0B |) for d = 3, we recall that for a single absorbing window A the fluxes calculated in
loc. cit. are

gA(x) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g̃Af
(

r
ε

)
√

1 − r2

ε2

for x ∈ A, d = 2

g̃A√
1 − r2

ε2

for x ∈ A, d = 3.

(17)

For d = 2 the variables r and r ′ are the signed arclengths in A and B, measured from their
centers 0A and 0B , respectively; the function f (α) is a positive smooth function for |α| � 1
such that f (0) = 1. Equations (17) in A and B are an approximate solution of (14), (15)
for well separated A and B and constants g̃A, g̃B . They are only approximations, because
the integral

∫
B

N(x, ξ)gB(x) dSx is not constant for ξ ∈ A, though it is much smaller than∫
A

N(x, ξ)gA(x) dSx there. If, however, A and B are not well separated (17) (in A and in
B) is not even an approximate solution, because the integrals are of comparable orders of
magnitude.

2.2. The first eigenvalue for d = 2

First, we estimate integral
∫
A

N(r, ξ)gA(r) dr in case the two windows are identical (the
general case is similar) for a planar problem. We set 	 = ε + 	′ + δ and recall that it was
shown in [7] that the flux density through a single window of size 2ε is given by (17), where
f	(x) is a smooth positive even function for −1 � x � 1 and f	(0) = 1. The computations
of [5, 7] show that the solution of the two windows problem (14)–(15) has the form

gA(r) = g̃Af	

(
r
ε

)
√

1 − r2

ε2

for −ε � r � ε, (18)

gB(r) = g̃Bf	

(
r
ε

)
√

1 − r2

ε2

for ε + 	′ � r � 3ε + 	′, (19)

where g̃A and g̃B are constants and f	(x) is a positive smooth function for −1 � x � 1,

1 + 	′
ε

� x � 3 + 	′
ε

, such that f	(0) = f	

(
2 + 	′

ε

) = 1. To estimate the solution of the mixed
problem in A and B, we begin with∫ ε

−ε

N(r, ξ)gA(r) dr =
∫ ε

−ε

g̃A

(
vS(x, ξ) − 1

Dπ
log|r − ξ |)√

1 − r2

ε2

f	

( r
ε

)
dr.

5
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4

3

1
0

y

2

1

0.50-0.5-1

The integal in (22)

Figure 2. The function (23).

Scaling r = εx, ξ = 	′ + 2ε + εy and approximating vS(x, ξ) = vS(0A, 2ε + 	′) + O(ε),
uniformly for all x ∈ A, ξ ∈ B, and 	′, ε < 1, we obtain∫ ε

−ε

N(r, ξ)gA(r) dr

= − 1

Dπ
εg̃A

∫ 1

−1

[
log(2ε + 	′) − πvS(0A, 2ε + 	′) + O(ε) + log

∣∣1 + δ′ x−y

2

∣∣]
√

1 − x2
f	(x) dx

= − 1

Dπ
{εg̃Aα[log(2ε + 	′) − πvS(0A, 2ε + 	′) + O(ε)] + εg̃Aα(y)}, (20)

where δ′ = 2ε
2ε+	′ < 1 and

α =
∫ 1

−1

f	(x) dx√
1 − x2

, α(y) =
∫ 1

−1
log

∣∣∣∣1 + δ′ x − y

2

∣∣∣∣ f	(x) dx√
1 − x2

. (21)

Using the inequality∣∣∣∣log

∣∣∣∣1 + δ′ x − y

2

∣∣∣∣
∣∣∣∣ =
∣∣∣∣∣−

∞∑
n=1

(−1)n+1 (δ′)n

n

(
x − y

2

)n
∣∣∣∣∣ �

∞∑
n=1

|x − y|n
n2n

= −log

∣∣∣∣1 − |x − y|
2

∣∣∣∣ for |x|, |y| < 1 (22)

and the bound (see figure 2)

1.281 286 760 �
∫ 1

−1
log

∣∣∣∣1 − |x − y|
2

∣∣∣∣ dx√
1 − x2

� 4.355 172 182, (23)

we obtain

0 < |α(y)| � −
∫ 1

−1
log

∣∣∣∣1 − |x − y|
2

∣∣∣∣ f	(x) dx√
1 − x2

� 4.355 172 182 max
|x|�1

f	(x),

6
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so that the logarithmic term dominates the right-hand side of (20) for small and large values
of 	′.

Since vS(x, ξ) is a uniformly bounded function for x ∈ A and ξ ∈ B, it follows from
(20) that∫ ε

−ε

N(r, ξ)gA(r) dr = εαg̃A[N(0A, 0B) + O(1)] for all ξ � ε, (24)

and

N(0A, 0B) = − 1

Dπ
log(2ε + 	′) + O(1),

where O(1) is a uniformly bounded function of ε and 	′ for 0 < ε < 1,	′ � 0. If the radii
of A and B are ε and δ, respectively, then

N(0A, 0B) = − 1

Dπ
log(ε + δ + 	′) + O(1),

uniformly for 0 < ε, δ < 1,	′ > 0. Using (24) and the computations [7], we get that

∫
A

N(x, ξ)gA(x) dSx =

⎧⎪⎪⎨
⎪⎪⎩

αε[−log ε + O(1)]g̃A

Dπ
for ξ ∈ A

−εαg̃A

[
log(ε + δ + 	′) + O(1)

]
Dπ

for ξ ∈ B.

(25)

and

∫
B

N(x, ξ)gB(x) dSx =

⎧⎪⎪⎨
⎪⎪⎩

βδ[−log δ + O(1)]g̃B

Dπ
for ξ ∈ B

−δβg̃B

[
log(ε + δ + 	′) + O(1)

]
Dπ

for ξ ∈ A,

(26)

where O(1) is a uniformly bounded function for 0 < ε, δ < 1,	′ > 0 and ξ ∈ A ∪ B.
For ε � 1 and δ � 1 the logarithmic terms in the first lines of (25) and (26) are dominant,

but not in the second lines, because the regular part of the Neumann function can be of the
same order of magnitude as the leading term.

Using the boundary conditions (14) and estimates (25), (26), we see that to leading order

αε[log ε + O(1)]g̃A

Dπ
+

δβg̃B[log(ε + δ + 	′) + O(1)]

Dπ
= C

εαg̃A[log(ε + δ + 	′) + O(1)]

Dπ
+

βδ(log δ + O(1))g̃B

Dπ
= C

and

αg̃A

π
= −DC

log 1
δ

− [log(ε + 	′ + δ) + O(1)]

ε log 1
ε

log 1
δ
(1 + Õ(1)) − ε[log(ε + 	′ + δ) + O(1)]2

(27)
βg̃B

π
= −DC

log 1
ε

− [log(ε + 	′ + δ) + O(1)]

δ log 1
δ

log 1
ε
(1 + Õ(1)) − δ[log(ε + 	′ + δ) + O(1)]2

,

where

Õ(1) = O

(
1

log ε

)
+ O

(
1

log δ

)
.

Equations (18) and (21) give∫ ε

−ε

gA(r) dr =
∫ ε

−ε

g̃A√
1 − r2

ε2

f	

( r
ε

)
dr = αεg̃A,

7
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so the flux condition (7) implies that for d = 2

αεg̃A + βδg̃B = −|�|
D

. (28)

Therefore

C = τ̄A∪B = |�|
Dπ
(
log 1

ε
+ log 1

δ

) log 1
δ

log 1
ε
(1 + Õ(1)) − [log(ε + 	′ + δ) + O(1)]2

1 − 2 [log(ε+	′+δ)+O(1)]
log 1

δ
+log 1

ε

. (29)

The constant C = τ̄A∪B is the MTA in A ∪ B. Formula (29) reduces to the single-window
formula (1) in the limit δ → 0. If the two absorbing arcs are well separated, that is, if
	′ � ε, δ for ε, δ � 1, then log |ε + 	′ + δ| � log 1

δ
, log 1

ε
and Õ(1) = o(1), so the rate of

absorption in A ∪ B reduces to
1

τ̄A∪B

=
(

1

τ̄ε

+
1

τ̄δ

)
(1 + o(1)) for ε, δ � 1, (30)

which means that the two absorbing arcs do not interact. For example, when the two windows
are well separated and if δ = ε, equation (30) gives

τ̄A∪B = τ̄ε

2
, (31)

where τ̄ε is the MTA in a single absorbing arc of length ε is given by (1).
For small 	′ formula (29) expresses the nonlinear interference between the two arcs. For

example, if two arcs of length 2ε merge, formula gives, as 	′ shrinks to zero,

τ̄A∪B = |�|
π

log
1

ε
(1 + o(1)) = τ̄ε for log

1

ε
� 1, (32)

which is identical to expansion (1), which applies to a single absorbing arc of the merged
windows, that is, to a single arc of length 4ε. Note that the factor 1/2 in (31) disappears
in (32).

Brownian simulations for the empirical estimate of the MTA in A ∪ B, as a function of
the distance 	′ between the windows, give the results shown in figure 3. The order O(1) term
in the expansion (1) of the MTA shifts the curve parallel to the x-axis. Thus for two arcs with
ε = 0.03, we get log(1/ε) ≈ 3.6 with the shift 1.3.

2.3. The first eigenvalue for d = 3

We consider two co-planar disks A and B centered at 0A = (0, 0) and 0B = (	, 0), with radii ε
and δ, respectively, and assume, as we may, that δ � ε. We write x = 0A+r(cos θ, sin θ),x′ =
0B + r ′(cos θ ′, sin θ ′) and 	 = ε + 	′ + δ, so that |0A − 0B | = ε + 	′ + δ.

To estimate the solution of the Helmholtz equation (14), (15), we generalize (17) to A

and B and write∫
A

N(x,x′)gA(x) dSx =
∫ 2π

0

∫ ε

0
N(r ′, θ ′, r, θ)

g̃Af	

(
r
ε
, θ
)
r dr√

1 − r2

ε2

dθ, (33)

where g̃A and g̃B are constants and f	(α, θ) is a positive smooth function for 0 � α � 1, 0 �
θ < 2π , such that f	(0, θ) = 1. Using (10) and (11), we rewrite (33) for x′ ∈ A, as∫

A

N(x,x′)gA(x) dSx

= 1

2Dπ

∫ 2π

0

∫ ε

0

g̃Af	

(
r
ε
, θ
)
r dr dθ√

r2 − 2rr ′ cos(θ − θ ′) + r ′2
√

1 − r2

ε2

(1 + o(1))

= ε

2π

∫ 2Dπ

0

∫ 1

0

g̃Af	(r, θ)r dr dθ√
r2 − 2rr ′ cos(θ − θ ′) + r ′2√1 − r2

(1 + o(1)) as ε → 0,

8
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MFPT for two holes of size ε = 0.02. d = 2. R = 2. D = 1.

 

 
Numerical Results
Analytic Formula

Figure 3. Normalized MTA as a function of the distance 	′ between two holes. We normalized
by the volume and the y-axis represents the MTA normalized by τ1 (MTA in a single hole). We
choose ε = δ = 0.03, the cell radius is R = 5 and τ1 is computed according to formula 1. The
contribution of the regular part of the Green function is estimated as 1.3 by a numerical fit.

where o(1) = O(ε log ε). First we integrate with respect to θ to obtain

∫ 2π

0

dθ√
r2 − 2rr ′ cos(θ − θ ′) + r ′2 = 4K

(
2
√

rr ′
r+r ′
)

r + r ′ ,

where K(·) is the complete elliptic integral of the first kind. Expanding f	(r, θ) in Fourier
series, we obtain an expansion of the outer integral in Fourier series in θ ′ with coefficients,
which are integrals with respect to r of elliptic integrals of the variable 2

√
rr ′

r+r ′ with weights of

the form P(r,r ′)√
1−r2 , where P(r, r ′) is a rational function. We approximate the Fourier series by

the first term and since the integral is weakly dependent on r ′, we approximate it by its value
at r ′ = 0. A direct evaluation gives that∫

A

gA(x)

|x − x′| dSx = 1

2π
εg̃Aα̃(1 + o(1)) for x′ ∈ A, ε < 1, (34)

where

α̃ =
∫ 2π

0
dθ

∫ 1

0

f	(x, θ) dx√
1 − x2

.

Equation (34) is a consequence of the expansion in [6] and the expansion of the Neumann
function (10).

For x′ ∈ B, we scale x = 0A + εη,x′ = 0A + (	 + 2ε)u + εξ, where the line between the
centers 0A and 0B is spanned by the unit vector u, and we write

1

|x − x′| = [(	 + 2ε)2 + 2ε2 + 2ε(	 + 2ε)(η,u) + 2ε(	 + 2ε)(ξ,u) + 2ε2(η, ξ)]−1/2

= 1

(	 + 2ε)

[
1 − ε

(	 + 2ε)
((ξ,u) + (η,u)) + O

(
2ε2

(	 + 2ε)2

)]
. (35)

9
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We obtain∫
A

N(x,x′)gA(x) dx = ε2g̃A (1 + o(1))

2Dπ(	 + 2ε)

∫ 2π

0
dθ

×
∫ 1

0

{
1 − ε

(	 + 2ε)
[(ξ,u) + (η,u)] + O

(
2ε2

(	 + 2ε)2

)}
f	(z, θ)z dz√

1 − z2
,

where (η,u) is a linear function of z. Expanding in Fourier series as above, we set ξ = 0 and
obtain the approximation

∫
A

N(x,x′)gA(x) dSx ≈
⎧⎨
⎩

α̃εg̃A(1 + o(1))

2Dπ
for x′ ∈ A, ε < 1

ε2g̃Aα[N(0A, 0B) + O(1)] for x′ ∈ B, ε < 1,

(36)

where

α =
∫ 2π

0
dθ

∫ 1

0

{
1 − ε

(	 + 2ε)
(η,u) + O

(
2ε2

(	 + 2ε)2

)}
f	(z, θ)z dz√

1 − z2
. (37)

Note that α depends weakly on ε and is evaluated below. Similar analysis of the integral over
B gives

∫
B

N(x,x′)gB(x) dSx ≈
⎧⎨
⎩

β̃δg̃B(1 + o(1))

2Dπ
for x′ ∈ B, δ < 1

δ2g̃Bβ [N(0A, 0B) + O(1)] for x′ ∈ A, δ < 1,

(38)

where β and β̃ are analogous to α and α̃, respectively.
As A and B shrink the constant C diverges while

∫
�

N(x,x′) dx stays bounded. Therefore
we can approximate equations (14) by

F(0A) ≈ −C = α̃εg̃A(1 + o(1))

2Dπ
+ δ2g̃Bβ [N(0A, 0B) + O(1)]

(39)

F(0B) ≈ −C = β̃δg̃B(1 + o(1))

2Dπ
+ ε2g̃Aα [N(0A, 0B) + O(1)] .

Thus, setting R = α/α̃ = β/β̃, we write (39) as

αg̃A(1 + o(1)) = C
− 1

2DπR
+ δ [N(0A, 0B) + O(1)]

ε
4π2D2R2 − δε2 [N(0A, 0B) + O(1)]2

βg̃B(1 + o(1)) = C
− 1

2DπR
+ ε [N(0A, 0B) + O(1)]

δ
4π2D2R2 − εδ2 [N(0A, 0B) + O(1)]2)

.

To determine the value of the constant C, we use the flux integrals∫
A

gA(x) dSx = ε2αg̃A(1 + o(1)),

∫
b

gB(x) dSx = δ2βg̃B(1 + o(1)) as ε, δ → 0.

Using the flux condition (7) for two holes of radii ε and δ, we obtain

ε2αg̃A + δ2βg̃B = −|�|
D

,

hence

C = τ̄A∪B = |�|
2DπR(ε + δ)

1 − 4π2D2R2εδN(0A, 0B) + O(1))2

1 − 4πDR εδ[N(0A,0B)+O(1)]
ε+δ

. (40)
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Figure 4. Normalized MTA as a function of the distance 	 between two holes. The MTA is
normalized by the MTA in a single hole. The values of the parameters are ε = δ = 0.3, the radius
is R = 2, and τ1 is computed from (1). To fit to Brownian simulations, the value a2 ≈ 0.6 and the
regular part of the Green–Neumann function O(1) = 0.4 were chosen.

When the distance between the centers 0A and 0B is 	 = ε + 	′ + δ, (10) and (11) give

N(0A, 0B) = 1

2πD|ε + 	′ + δ| [1 + O(ρ)], (41)

where ρ = min
(
1, |ε +	′ +δ| log 1

|ε+	′+δ|
)
. The factor of 2π in the denominator of (41) comes

from the coalescence of the image charges in Neumann’s function on the boundary. Setting
r̃ = DRπ/2, we write

τ̄A∪B = |�|
4(ε + δ)r̃

1 − 16r2δε
[

1
2π |ε+	′+δ| (1 + O(ρ))

]2
1 − 8δεr̃

ε+δ
1

2π |ε+	′+δ| (1 + O(ρ))
. (42)

For a fixed D, the parameter r depends on 	′, δ and ε so we write r̃ = r̃(	′, ε, δ). If 	′ is
large, then f	(r, θ) = const, so lim	′→∞ r̃(	′, ε, δ) = 1. For δ, ε,	′ → 0, we determine
the value of r̃(0, ε, δ) by fitting to numerical simulations of Brownian motion in a sphere with
two tangent circular holes.

To test the range of validity of formula (40), we ran Brownian simulations in a three-
dimensional ball of radius R = 2, containing two small absorbing caps of radius a = 0.3 on
the boundary. In figure 4, we plot the MTA as a function of the distance 	′ between holes.
For fixed ε and δ, we use a first-order Padé approximation to fit r as a function of 	′,

r̃(	, ε, δ) = a1
	′

1 + 	′ + a2
1

1 + 	′ . (43)

11
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The fit at 	′ → ∞ gives a1 = 1. Fitting to Brownian simulations, we find that the O(1)

correction in (40) is 0.4 and a2 ≈ 0.6. The results are represented in figure 4.
Because r̃ stays close to 1, we simplify (42) to

τ̄A∪B ≈ |�|
4(ε + δ)

1 − 16δε
[

1
2π |ε+	′+δ| (1 + O(ρ))

]2
1 − 8δε

ε+δ
1

2π |ε+	′+δ| (1 + O(ρ))
. (44)

Formula (44) reduces to the single-window formula (1) if δ → 0. However, for two touching
identical absorbing geodesic disks of radius ε/2 (i.e., 	 = 0),

τ̄A∪B ≈ |�|
4εr̃

(
1 +

r̃

π

)
, (r̃ ≈ 0.6). (45)

Note that (45) is not the MFPT to a single circular absorbing window of double the area of
a single window of radius ε/2 (which is |�|/2

√
2ε). A more striking result is obtained by

moving the windows apart (without changing the radius). The ratio between the MTAs (for
	 = 0 and 	 = ∞) is 1

r̃

(
1 + r̃

π

) ≈ 1.98. This means that clustering may decrease the first
eigenvalue (the flux) by about 50%.

3. Clusters of many holes

We now extend the above analysis to larger clusters. We consider clusters that are ensembles
of circular Dirichlet windows Ai ⊂ ∂�, (i = 1, 2, . . . , M), such that each has a neighbor
separated from it by a distance comparable to their radii. The condition that the solution u(x)

of equation (12) vanishes on ∂�a is

F(ξ) =
M∑
i=1

∫
Ai

N(x, ξ)gi(x) dSx, for all ξ ∈ ∂�a =
M⋃
i=1

Ai, (46)

where F(ξ) is defined in (16) and the flux though window Ai is gi(x). Summing the
contributions of all fluxes (7), we get

M∑
i=1

∫
Ai

gi(x) dSx = −|�|. (47)

Each circular window Ai is centered at 0i and has radius εi . As above, we fix the parameters
ri,j = r(	i,j , ε1, . . . , εM) at ri,j = 1. Using the explicit computation in dimension 3, given
by formula (38) for ξ = ξj ∈ Aj , we obtain the system of M + 1 linear equations for the
unknown g̃i and C,

π

2
εj g̃j +

M∑
i 
=j

2πε2
i g̃iN(i, j) = F(ξj ) ≈ −C, j = 1, . . . , M, (48)

2π

M∑
i=1

ε2
i g̃i = −|�|, (49)

where N(i, j) = N(0i , 0j ). Equation (49) is the flux condition. We assume that all radii εi

can be scaled by εi = εε̃i , where ε = min1�i�M εi � 1. Then, for windows separated by
distance 	i,j ,

max
i,j

2εN(i, j) = max
i,j

1

π
(
ε̃i + ε̃j + 	i,j

ε

) (1 + o(1)) < 1. (50)

12
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Scaling Gj = πεj g̃j /C, we write the symmetric matrix of the system (48) (with 1/2 on the
diagonal) as

M =

⎛
⎜⎜⎝

1/2 2ε̃2N(1, 2) · · · 2ε̃MN(1,M)

2ε̃2N(1, 2) · · · · · · · · ·
· · · · · · · · · · · ·

2ε̃MN(1,M) · · · · · · 1/2

⎞
⎟⎟⎠ . (51)

We decompose M as

M = 1
2IM + εA,

where IM is the identity matrix and A contains off-diagonal terms. Writing 1M (resp. G̃M )
for a vector of 1 (resp. Gj ), (48) becomes(

1
2IM + εA

)
G̃M = −1M (52)

and can be inverted as the convergent series

G̃M = −2
∞∑

k=0

(−2εA)k1M. (53)

All terms can contribute to the sum, because εN(i, j) can be of order 1. The interaction of
the cluster with window j is given by

Gj = −2 − 2
∞∑

k=0

(−2ε)k
∑

i1,...,ik

N(j, i1)N(i1, i2) · · · N(ik−1, ik), (54)

where the sum is over all non-diagonal pairs (not all ik are different). The nonlinearity depends
on the number of windows. In the first approximation,

G̃M ≈ −2(IM − 2εA)1M (55)

and

π
εj g̃j

C
= Gj = −2

⎛
⎝1 − 2ε

∑
i 
=j

ε̃iN(i, j)

⎞
⎠ . (56)

Using condition (49), we obtain for the constant C the equation

−4C

M∑
i=1

εi

⎛
⎝1 − 2

∑
i 
=j

εiN(i, j)

⎞
⎠ = −|�|,

so

C = τ̄⋃Ai
≈ |�|

4D

1∑M
i=1 εi

(
1 − 2

∑
i 
=j εjN(i, j)

) (57)

and the flux coefficients are

g̃j ≈ |�|
2Dπεi

(
1 − 2

∑
i 
=j εiN(i, j)

)
∑M

i=1 εi

(
1 − 2

∑
i 
=j εjN(i, j)

) . (58)

The total flux through hole Ai is given by


i =
∫

A

gi(S
′) dS ′ = 2πε2

i g̃i ≈ |�|
D

εi

(
1 − 2

∑
i 
=j εjN(i, j)

)
∑M

i=1 εi

(
1 − 2

∑
i 
=j εjN(i, j)

) . (59)

In the case of maximal packing, around a disk of radius ε surrounded by touching windows
of the same radius, the maximum number of touching disk is M = 6 in dimension 2. Thus at

13
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ε

dd

d

12

3

Figure 5. Cluster of six Dirichlet windows packed at the density limit. Each disk has a radius ε

and using the three distances d1, d2, d3, we can use formula (57) to estimate the mean first passage
time to the cluster.

order 1, using formula (57), we can estimate the MTA in the cluster of disks (see figure 5).
Using the symmetries of order 3 in figure 5, formula (57) for this specific cluster is

τ̄f l ≈ |�|
4DMε

(
1 + 2ε

∑
i 
=j N(i, j)

M
+ o(ε)

)
. (60)

We label 0 the centered window and the other are labeled clockwise from 1 to 6.
The contribution to the sum of the central window is MN(0, 1) while that of the non-
centered windows is to leading order M(3N(0, 1) + 2N(1, 3) + N(1, 4), where N(0, 1) =

1
2πDd1

, N(1, 3) = 1
2Dπd2

, N(1, 4) = 1
2πDd3

and d1 = 2ε, d1 = 2
√

3ε, d3 = 4ε. Thus

τ̄f l ≈ |�|
4DMε

{1 + 2ε[4N(0, 1) + 2N(1, 3) + N(1, 4) + O(1)]}

= |�|
4DMε

[
1 +

2

π

(
1 +

1

2
√

3
+

1

8

)]
+ O(1).

4. Discussion

We derived and asymptotic approximation to the first eigenvalue of mixed Dirichlet–Neumann
boundary value problem for the Laplace equation under the assumption that the Dirichlet
boundary consists of a finite number of small arcs in dimension 2 or small disks in dimension 3.
We analyze the effect of clustering of the Dirichlet windows on the first eigenvalue and found
that clustering may affect the first eigenvalue significantly. In the application to Brownian
motion, we found the effect on the MTA and obtained an explicit approximation to the
probability flux of escaping Brownian trajectories. We still do not know what are the
geometrical features of the Dirichlet windows, which determine the overall MTA.
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